Science News

Curated by RSF Research Staff

Discovery in the early universe poses black hole growth puzzle

Quasars are luminous objects with supermassive black holes at their centers, visible over vast cosmic distances. Infalling matter increases the black hole mass and is also responsible for a quasar's brightness. Now, using the W.M. Keck observatory in Hawaii, astronomers led by Christina Eilers have discovered extremely young quasars with a puzzling property: these quasars have the mass of about a billion suns, yet have been collecting matter for less than 100,000 years. Conventional wisdom says quasars of that mass should have needed to pull in matter a thousand times longer than that – a cosmic conundrum. The results have been published in the May 2 edition of the Astrophysical Journal.

Within the heart of every massive galaxy lurks a . How these black holes formed, and how they have grown to be as massive as millions or even billions of suns, is an open question. At least some phases of vigorous growth are highly visible to astronomical observers: Whenever there are substantial amounts of gas swirling into the black hole, matter in the direct vicinity of the black hole emits copious amount of light. The black hole has intermittently turned into a quasar, one of the most luminous objects in the universe.

Now, researchers from the Max Planck Institute for Astronomy (MPIA) have discovered three  that challenge conventional wisdom on black hole growth. These quasars are extremely massive, but should not have had sufficient time to collect all that mass. The discovery, which is based on observations at the W.M. Keck observatory in Hawaii, glimpses into ancient cosmic history: Because of their extreme brightness, quasars can be observed out to large distances. The astronomers observed quasars whose light took nearly 13 billion years to reach Earth. In consequence, the observations show these quasars not as they are today, but as they were almost 13 billion years ago, less than a billion years after the big bang.

Article: https://phys.org/news/2017-05-discovery-early-universe-poses-black.html

More information: Anna-Christina Eilers et al. Implications of∼ 6 Quasar Proximity Zones for the Epoch of Reionization and Quasar Lifetimes, The Astrophysical Journal (2017). DOI: 10.3847/1538-4357/aa6c60

Sharing is caring - please share this with your friends:

If you like this content, you will love the Resonance Academy.

Resonance Academy logo

Complete this form and click the button below to subscribe to our Science News Digest

No SPAM. Ever. That’s a promise.

X