Science News

Curated by RSF Research Staff

Hydrodynamic Simulation Predicts Large-Scale Cosmic Web in High Structural Detail

Novel computational methods have helped create the most information-packed universe-scale simulation ever produced. The new tool provides fresh insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed throughout the cosmos, and where magnetic fields originate.

Led by principal investigator Volker Springel at the Heidelberg Institute for Theoretical Studies, astrophysicists from the Max Planck Institutes for Astronomy (MPIA, Heidelberg) and Astrophysics (MPA, Garching), Harvard University, the Massachusetts Institute of Technology (MIT), and the Flatiron Institute's Center for Computational Astrophysics (CCA) developed and programmed the new universe simulation model, dubbed Illustris: The Next Generation, or IllustrisTNG.

The model is the most advanced universe simulation of its kind, says Shy Genel, an associate research scientist at CCA who helped develop and hone IllustrisTNG. The simulation's detail and scale enable Genel to study how  form, evolve and grow in tandem with their star-formation activity. "When we observe galaxies using a telescope, we can only measure certain quantities," he says. "With the simulation, we can track all the properties for all these galaxies. And not just how the galaxy looks now, but its entire formation history." Mapping out the ways galaxies evolve in the simulation offers a glimpse of what our own Milky Way galaxy might have been like when the Earth formed and how our galaxy could change in the future, he says.

Mark Vogelsberger, an assistant professor of physics at MIT and the MIT Kavli Institute for Astrophysics and Space Research, has been working to develop, test and analyze the new IllustrisTNG simulations. Along with postdoctoral researchers Federico Marinacci and Paul Torrey, Vogelsberger has been using IllustrisTNG to study the observable signatures from large-scale magnetic fields that pervade the universe.

"The high resolution of IllustrisTNG combined with its sophisticated  model allowed us to explore these questions of magnetic fields in more detail than with any previous cosmological simulations," says Vogelsberger, one of the authors of the three papers published today in the Monthly Notices of the Royal Astronomical Society.

IllustrisTNG is a successor model to the original Illustris simulation developed by the same research team, but it has been updated to include some of the physical processes that play crucial roles in the formation and evolution of galaxies.

Like Illustris, the project models a cube-shaped universe smaller than our own. This time, the project followed the formation of millions of galaxies in a representative region of a universe with nearly 1 billion light-years per side (up from 350 million light-years per side just four years ago). lllustrisTNG is the largest hydrodynamic simulation project to date for the emergence of cosmic structures, says Springel, also of MPA and Heidelberg University.

 

The cosmic web of gas and dark matter predicted by IllustrisTNG produces galaxies quite similar to real galaxies in shape and size. For the first time, hydrodynamic simulations could directly compute the detailed clustering pattern of galaxies in space. In comparison with observational data - such as the data provided by the powerful Sloan Digital Sky Survey - the simulations from IllustrisTNG demonstrate a high degree of realism, says Springel.

In addition, the simulations predict how the cosmic web changes over time, especially in relation to the dark matter that underlies the cosmos. "It is particularly fascinating that we can accurately predict the influence of supermassive black holes on the distribution of matter out to large scales," says Springel. "This is crucial for reliably interpreting forthcoming cosmological measurements.

Continue Reading At: Astrophysicists Release Illustris TNG

Sharing is caring - please share this with your friends:

If you like this content, you will love the Resonance Academy.

Resonance Academy logo

Complete this form and click the button below to subscribe to our Science News Digest

No SPAM. Ever. That’s a promise.

X